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We prove that the one-site distribution of Gibbs states (for any finite spin set S) 
on the Bethe lattice is given by the points satisfying the equation 7t = T2~z, where 
T= h o A o q~, with ~o(x) = x Iq- t)/q, h(x)  = (x/llx[I q)q, A = (a(r, s): r, s c S), and 

a(r, s) = exp(K[r, s] + (l/q)IN, r + s] ) 

We atso show that for A a symmetric, irreducible operator the nonlinear 
evolution on probability vectors x(n + 1) = Ax(n)P/lIAx(n)P]kt with p > 0 has 
limit points ~ of period ~<2. We show that A positive definite implies limit 
points are fixed points that satisfy the equation A~. p = 2~. The main tool is the 
construction of a Liapunov functional by means of convex analysis techniques. 

KEY W O R D S :  Gibbs states; Bethe lattice; spin vector; dynamical systems; 
automata networks; subdifferential; cyclically monotone function; convex 
function; Liapunov functional. 

1. I N T R O D U C T I O N  

W e  s tudy  n o n l i n e a r  d y n a m i c s  h a v i n g  a s soc i a t ed  l imi t  po in t s  o f  p e r i o d  t ~< 2. 

T h e  m a i n  a p p l i c a t i o n s  of  these  resul ts  a re  m a d e  in the  d e s c r i p t i o n  of  the  

G i b b s  s tates  of  the  Be the  lat t ice.  W e  also s h o w  tha t  resul ts  o b t a i n e d  can  be 

v iewed  as a n o n l i n e a r  g e n e r a l i z a t i o n  of  s y m m e t r i c a l  M a r k o v  chains .  

In  Sec t i on  2 we i n t r o d u c e  the  m a t h e m a t i c a l  t e chn iques  we use. T h e y  

were  first d e v e l o p e d  (1'3) to  ana lyze  the  d y n a m i c a l  b e h a v i o r  of  a u t o m a t a  

n e t w o r k s  r e l a t ed  to n e u r o n a l  ac t iv i ty  mode l s .  T h e  d y n a m i c a l  sys tems  we 

s tudy  can  be wr i t t en  as T =  h o A o q), whe re  A is a s y m m e t r i c  o p e r a t o r  and  
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268 Goles and Martinez 

f = ~ o o h  is in the subdifferential of a convex function. The fundamental 
tools to analyze these systems are the Liapunov functionals, which are 
constructed in Theorem 1. To obtain them we use concepts from convex 
analysis. In Theorem 2 we discuss conditions that, imposed on the 
Liapunov functionals, imply that finite orbits can only have period ~< 2. We 
can also establish hypotheses that allow us to assert that finite orbits are 
only fixed points and some other hypotheses implying that there is only 
one fixed point, any other finite orbit being of period 2 (Theorem 3). We 
finish Section 2 by characterizing the relevant functions in our applications, 
those that belong to subdifferentials of seminorms. In this case the 
Liapunov functional takes a simple form (Theorem4).  Some of these 
results were established in a more restricted framework in refs. 1-3. 

In Section 3 we study the Gibbs states v on the configuration space 
S L~q), where S is a finite spin set and L~(q)  the Bethe lattice of coor- 
dination number q. We assume that v is obtained by the thermodynamic 
limit taken with Ln(q )~  Loo(q), with Ln(q) the Cayley tree of coordination 
number q constructed until the shell n. The Hamiltonian (for S r"(q)) is 

where Zi,j is over neighbor sites, K is the interaction, and N is the exterior 
magnetic field. We prove that the probability vector ~ =  (v{a: ~ (0 )= r} ,  
r ~ S )  satisfies the equation 7r=(hoAoq))2~,  where q~(x)=x(q l~/q, 
h(x) = (x/llXllq) q, and A is the matrix given by 

a ( r , s ) = e x p ( K [ r , s ] + ( 1 / q ) [ N , r + s ] )  for r , s ~ S  

(Theorem 5). In obtaining this equation we use the results of the present 
section and the recursive equations for the Gibbs states on S L"(q) obtained 
in ref. 7. By using the same method as in Theorem 3, we deduce that for 
large ferromagnetic iteration K,>0 (it suffices that K > 0  for ISI = 2) and 
under the absence of exterior magnetic field, N =  0, the equation for ~ is 
reduced to 7~ = (hoA o~o)~. 

In Section 4 we study some nonlinear dynamics on ~+ whose limit 
points are orbit of period ~<2. This allows us to assert in Corollary 3 that 
the nonlinear evolution 

Z a(r, s)r~r(n) p 
7zr(n + 1 )=  n>~O, r e S  

Y~r' ~S ~,s~S a(r', s)rcr,(n)" 

of probability vectors has only limit points of period t<~2, where 
(a(r, s): r, s e S) is symmetric. This generalizes the equations obtained for 
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limit points of symmetric Markov chains, which in fact satisfy the equation 
n=AZn;  recall that A is symmetric, so its period is 42 .  (But the results 
known for Markov chains are stronger because they characterize com- 
pletely the domain of attraction of any one of the probability vectors 
satisfying zr = A2rc and also they describe these points.) In Corollary 4 we 
obtain similar results for other transformations than ~0(x)= x p which also 
give rise to period ~<2 behavior of limit probability points (we use Orlicz 
space theory). 

In Section 5 we establish the consequence of our results when we study 
evolution equations A x  p in Ns. It induces a transformation on the rays that 
also have period ~<2 limit behavior when A is symmetric. We also give a 
bound for the number of solutions of the one-site distribution of Gibbs 
states when I sI = 2  and we detail these solutions for case q = 2  
[L~(2)  = g ]  and S =  {0, 1 }. For  a deeper description of solutions in the 
case S = {0, 1 }, q i> 2, see ref. 6, and ref. 9 for the case q = 2. Results in the 
case I SI/> 2, q- -3  were first obtained in ref. 8. Recent relevant results, 
obtained in a more general framework can be found in ref. 10. 

2. P R E L I M I N A R  R E S U L T S  

The evolution equation we shall study takes the following form in a set 
D included in a real Hilbert space (H, ( )): 

x ( n +  l ) =  Tx(n),  T = h o A o ~ o ,  for x ( O ) e D  (1) 

where q): D ~ H - .  F c  H, A: H ~  H, and h: F ~  D satisfy 

A is a symmetric linear operator such that A ( F ) ~  F (2) 

f =  ~0 oh is cyclically monotone on the closed 
convex set F (3) 

which means that for any cycle (Uo,..., Um 1, IAm = Uo) EFm+ 1, m ~> 2, we 
have 

m - -  1 

<f(u,+ l ) -  f (u , ) ,  u,+ ~ ) >>.O (4) 
i - - O  

We call f strictly cyclically monotone if it is cyclically monotone and for 
any nontrivial cycle (Uo ..... urn_l, Um=Uo) such that there exists some 
O ~ k ~ < m - 1  w i t h u ~ C u ~ + l ,  wehave  

m - - I  

{ f ( u ,  + ~ ) - f (u , ) ,  u, + l ) > 0  (5) 
i = 0  
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It can be shown that f is cyclically mono tone  iff it belongs to the sub- 
differential of a convex potential,  so there exists g: F--* ~ convex such that 

g ( u ) > ~ g ( v ) + ( f ( v ) , u - v ) ,  Vu, v ~ F  (6) 

f is strictly cyclically mono tone  iff g is strictly convex. In this case we 
have (2) 

g(u) - -g (v )=  ( f (v ) ,  u - v )  implies u = v  (7) 

Recall g*: H ~  ~ w { - o% oe }, the polar  of g, satisfies 

g*(v) = sup ( (u, v ) - g ( u ) )  (8) 
u ~ f  

Then, since g is a convex potential  o f f ,  we deduce 

g * ( f ( v ) ) + g ( v ) = ( v , f ( v ) )  for v ~ F  (9) 

The main results characterizing the finite orbits of the dynamical  
system T = h o A o ~o are as follows. 

T h e o r e m  1. Let A, ~o, and h satisfy (2) and (3); then 

H(x(n)) = -g*(~o(x(n))) + g(A~o(x(n))) ,," with n ~> 1 (10) 

so H(x(n)) is a Liapunov functional increasing with n ~> 1. 

T h e o r e m  2. Let  A, ~0, and h satisfy (2), (3), and (5), so q~oh is 
strictly cyclically monotone .  Then, if (x(0) ..... x ( t - 1 ) ,  x(t)=x(O)) is a 
periodic orbit, then it is of length t ~< 2. 

T h e o r e m  3. Let  A, ~0, and h satisfy (2) and (3) such that any 
periodic orbit  is of length t ~< 2 [for  instance, if f =  q~ o h satisfies (5)] ;  then: 
(a) if A is positive definite, then the periodic orbits of T are only fixed 
points (t = 1 ); (b) if A is negative definite, 0 s F, and (p o h ( 0 ) =  0, then h(0) 
is the only fixed point  of T and any other  periodic orbit  is of length t = 2. 

Proof  o f  Theorem 1. From (9) 

--g*(q)(x(n + 1))) = --g*(~o oh(Aq~(x(n)))) 

= g(Aq)(x(n))) 

- (Aq)(x(n)), qo(h(A~o(x(n)))) ) 

= g(Aq)(x(n))) 

- - (  Aq)(x(n) ), q)(x(n + 1) ) )  
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Then 

H(x(n + 1)) - -(A~o(x(n)),  ~o(x(n + 1)))  

+g(A(o(x(n))) + g(Aqo(x(n + 1))) 

For n ~> 1 define 

(11) 

A(n) = H(x(n + 1)) - H(x(n)) (12) 

If we put u(n)= Aq~(x(n)), we get 

q)(x(n + 1)) = q0 oh(Ago(x(n))) = f(u(n))  

By symmetry of A we obtain 

A(n)= - ( f ( u ( n ) ) , u ( n + 2 ) - u ( n ) ) + g ( u ( n + 2 ) ) - g ( u ( n ) )  (13) 

Since g is a potential o f f ,  we deduce A(n)>~O, Vn~>l; then, H(x(n)) 
increases for n>~ 1. | 

Proof of Theorem 2. If (x(0),..., x ( t - 1 ) ,  x ( t )= x(0)) is a periodic 
orbit and the functional H(x(n)) is constant for n ~> 0, then A(n) = 0. From 
(13) and the strictness condition on f we deduce u(n+2)=u(n) .  By 
applying h, we get x(n + 3) = x(n + 1) for any n ~> 0, then the result. I 

Proof of Theorem 3. Let (x(0), x(1)) be the periodic orbit; then 
x(n) = x(n(mod 2)). 

(a) Let 

7 = (q~(x(0) ) -  q~(x(1)), A(q~(x(0))-  q~(x(1)))) 

= ((p(x(0)), Aq~(x(0)) - Aq~(x(1))) 

+ (go(x(1)), Ago(x(1))-Aqo(x(O))) 

Now since we have a 2-periodic orbit x(n + 1) = x(n - 1), we deduce 

( qo(x(n)), Aq)(x(n) ) - Ago(x(n + 1)))  

= (~oo h(A(p(x(n + 1))), Aqo(x(n)) - Aq)(x(n + 1 ) ) )  

<~ g(A~o(x(n)))- g(A~o(x(n + 1))) 

Then ?~<0. since A is positive definite, we deduce q)(x(0))= ~o(x(l)); by 
applying h o A, we obtain x(1) = x(0). 

822/52/1-2-18 
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(b) From the hypothesis, h(0) is a fixed point. Now, suppose 
x (1)=  x(0) is a fixed point. We have 

g(O) >~ g(Aq)(x(O))) + ( q) oh(Aqo(x(O))), -Aq)(x(0)))  

= g(Aq)(x(O))) - (q)(x(0)), A(p(x(O))) 

Since q~ o h(0) = 0 and g is a convex potential of ~o o h from (9), we conclude 
that g(0) is a global minimum of g, so ((p(x(0)), Aq~(x(0))) >~0. Since A is 
negative definite we get (q~(x(O)),Aq)(x(O)))=O; then q~(x(0))=0. By 
applying h o A, we obtain x (0)=  h(0). | 

The most important applications concern functions q), h such that 
f = (p o h belongs to the subdifferential of a seminorm g (as occurs for some 
cellular automata wheref i s  the sign function(Z'3)). In this case the strictness 
hypothesis of Theorem 2 is not satisfied, but for some of these functions we 
will be able to show the conclusions of Theorem 2, then also those of 
Theorem 3 (we do this in the following sections). Now let us describe this 
class of subdifferentials and characterize the Liapunov functional H(x(n)) 
for a class of functions containing them. 

Theorem 4. If f =  q~ oh satisfies 

( f (u)  --f(v), u) >~ 0 Vu, v ~ F 

then 

(14) 

g (u)=  (u , f (u ) ) ,  u ~ F  (15) 

is a convex potential o f f  and 

H(x(n)) = g(Aq)(x(n))) 7 for n i> 1 (16) 

then its potential g(u)= (u, f (u ) )  is a seminorm. Conversely, i f f  belongs 
to the subdifferential of a seminorm g, then g(u)= (u, f (u ) )  and f satisfies 
(17) and (14) for F =  H. 

ProoL From (14) we obtain directly g(v)>~g(u)+ (f(u),  v - u ) ;  
then g is a potential o f f  From (9) and (15) we get g*(f(v))=O. Since 

q~(x(n)) = q) oh(Aq)(x(n- 1 ) ) ) = f ( u ( n -  1)) 

for n>~ 1 we get g*(q)(x(n)))=O. By replacing it in (10), we get (16). 

Furthermore, i f f  satisfies (14) for F =  H and also satisfies 

( f ( u ) , u ) =  - ( f ( - u ) , u )  Vu~H (17) 
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Now, if f satisfies (14) and (17) it is easy to show that g is a 
seminorm. (2t Conversely, if g(u) is a seminorm, then it is convex and any of 
its subdifferentials f satisfy 

g(2u)= 2g(u)>>. g(u) + (u, f(u) ), g(0)=0~> g(u)- {u, f(u) ) 

Then g(u)=(u,f(u)).  Equality (17) follows from g(u)=g(-u), and 
inequality 

{v,f(v)) = g(v)) g(u)+ {f(u), v - u )  = {u,f(u)) + (f(u), v - u )  

implies (14) for F = H .  | 

3. APPL ICAT IONS IN THE BETHE LATTICE 

Let q ~> 2. Consider the graph constructed as follows: we start from a 
central point 0 and we add q points all connected to 0. Call these new 
points the shell 1. The shell k + 1 is constructed by connecting q - 1  new 
points to any point of the shell k. The graph constructed until the shell n is 
denoted L,(q) and the infinite graph obtained for n --* 0% denoted L~(q), is 
called the Cayley tree of coordination number q. Recall that L ~ ( 2 ) =  Z. 

For L,(q) the number of points of the boundary and the number of 
points of the graph grow like ( q -  1)'. Then some problems appear when 
we try to describe the thermodynamic limits of Ising models on L~(q). We 
shall only consider those thermodynamic limits arising from limits 
L,,(q)--*L~(q), n'~oo [and not from other sequences A,~L~(q) ,  
n ~ 00 ] .  (5) 

When we consider only local properties infinitely far from the boun- 
dary in the limit n ~ 0% as we shall do, all sites of L~(q) are equivalent 
and it is called the Bethe lattice. 

Let S c NJ be a finite spin set; we denote by [ ,  ] the inner product on 
Na. We shall consider f2. = S Ln(q) for n ~ IN w { oo } (f2oo is the configuration 
space) and by %,m: f2m~f2., a~alo~ the restriction of cr to the coor- 
dinates of f2,, for n ~< m ~< oo. 

For n finite the partition function on L~(q) is given by 

Z, ,=  ~ exp l - -H . (~ ) ] ,  H . ( ~ ) =  - { K  ~ [-~(i),cr(j)] + ~  IN, ~(i)]} 
a ~ f2n [ i , j )  i 

(is) 

where the sum Z(~j) is over all neighbor couples (i, j)  and ~]~ over all the 
sites i of the tree L.(q). The parameter K~ ~ is the interaction ( K >  0 if it is 
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ferromagnetic, K < 0  if it is antiferromagnetic) and N e  Rd is the exterior 
magnetic field. 

The Gibbs law on ~2~ is denoted by #.  ; it satisfies 

p~{a e ~2~: ~r(i)= ri, ieLn(q)} 

= Z n  1 ~,  e x p [ - H . ( ~ ) ]  
{~eg2n:a(i)--r+,ieLn(q)} 

As Ln(q)--+L~(q), n--+ o0, by diagonal arguments there exists a sub- 
sequence n' --+ oe such that the following limits exist (in the sense of vague 
convergence of measures): 

lim C~n,n,#n, = Vn, Vn~>l (19) 
n'~oo 

Furthermore, there exists a unique measure v on the configuration space 
f2~ such that 

c~.,~ v = v. (20) 

The measure v is a Gibbs state35) 
We shall study the one-site distribution of this class of Gibbs states: 

Tc = (gr: r E S), rrr=v{~r~f2~:a(O)=r ) (21) 

Since all sites in the Bethe lattice are equivalent we have 

~r=V{~rEQo~:~(i)--r} for any i~Lo~(q) 

T h e o r e m  5. Let v be a Gibbs state on ~2o0 = S L+(q) given by (19), 
(20). Then the one-site distribution of this Gibbs state which is given by 
(21) is a probability vector ~, which satisfies the equation 

= (h oAo (p)2~ (22) 

where h, A, and q~ act on Ns+\{0} and are given by 

A=(a ( r , s ) : r , s~S ) ,  a(r,s)=exp(K[r,s]+l[N,r+S])q 

~9(X)=X(q 1)/q, h ( x ) = ( U ~ q )  q 

where x p = (x, p. : r e S), and I1" II + is the Lq-norm. 

(23) 

(24) 
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Proof. Let v be a Gibbs state and (v~), n' ~ o% satisfying (19), (20). 
We note that An(r)= { a e f 2 . :  a ( 0 ) = r }  for n e  N u {oo}. We have 

v.(A~(r) ) = v(c~2,~ (A~(r) ) ) = v(A oo(r) ) = nr 

On the other hand, 

vn(An(r))= lim (en,n,#n,)(A~(r))= lim g.,(A.,(r)) 

Note that n(n) = (TZr(n): r ~ S ) ,  where nr(n) = #.(An(r)); then 

n =  lim n(n') 
n ' ~ o o  

(25) 

Let F =  {n (n ) :neN} ,  so if we also show that the set of accumulation 
points of F satisfy (22), the theorem will be proved. 

By the construction of the Cayley tree it can be shown (7) that there 
exist functions Wn(r) such that the following relations hold: 

fE t -1 nr(n)=exp[N,  r](Wr(n)) q exp[N, s](Ws(n)) q 
~ . s ~ S  ) 

Wr(n ) = ~ exp(K[r,  s ]  + I-N, s])(Ws(n- 1)) q 1 
s E S  

Let us denote 

(26) 

(27) 

Then we get 

Then 

c. = ~ exp[N, s](Ws(n)) q 
s ~ S  

 r n,xJ = exp  Er, sl+ EN, l,exp(  EN, r:) 
s E S  

nr(n)l/a=(c,,lcqs_~) l/q ~ exp(K[r,  s])  
s ~ S  
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From ~ r E S  ~r(n) = 1 we have II~(n)l/qll q = 1; then necessarily 

(CnlCq n I) 1/q = ]rA(Tr(n - 1) )  ( q -  1)/q]lq 1 

(remark that A maps ~s+\{0} into itself). By using (23) and (24) we finally 
get 

~(n) = (ho A o q~) zr(n - 1 ) (28) 

Take T=hoAogo;  it maps ~s+\{0} in the simplex P ~ = { y E ~  s" 
Zr  ~ s Yr = 1 } ; then its limit set O 1 is given by 

O1 = {y E P~: 3x ~ P1, a subsequence n" ~ 

such that y = lira Tn"x} (29) 
/7" ~ CO 

We have that the set of accumulation points of F is included in O1; then 
the theorem will follow when we show that any point Y~P1 satisfies 
Eq. (22), that is, y = TZy. This will constitute our next result. 

Now let us extend go, h to F =  ~s+ such that h(0) = g0(0) = 0; then 

h / x \q l if x # O ,  f (O )=O  (30) 

belongs to the subdifferential of g(x)  = Ilxllq. The limit set of T acting on 
~+ is {0} ~ o l .  

Take y ~ O1; then 3x ~ P1 and n" ~ ~ such that y = lim,,,~ ~ T""x. 
We have that T maps the compact P1 into itself; then there exists a 
subsequence n " c  ( n " - 1 )  such that there exists z = l i m , , ~  T"'~ By 
continuity of T on P1 we get Tz = y. 

Note v(n)= Ago(T"z). The operator A is symmetric; then we can apply 
(16), so HAgo(T"x)IIq increases with n>~l to a finite quantity M. By 
continuity, I[v(n)llq= M, Vn >~0. And also by continuity on 3(n)  [see (12), 
(13)] we get ( f (v(2)) ,  v ( 2 ) -  v(0)> =0.  Then we obtain 

Ilv(2)llq = Ilv(O)ll q -4- <f(v(O)), v ( 2 ) -  v(O)> (31) 

Now, from the equalities 

<f(v(O)), v(O)> = Hv(O)llq, IIv(O)ll q l=]]v(o)qltq/(q 1) 

expression (31) becomes 

]IV(2)llq 11/)(0) q l[[q/(q_l)= < V ( 0 )  q - l ,  v(2)> (32) 
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that is, the Holder inequality becomes an equality; then there exist 2, 2' # 0 
such that 2(v(2))q=2'(v(O) q 1)q/(u-l~, which implies v(2)=2"v(0). Since 
llv(2)llu = llv(0)llu, we deduce v(2)=v(0); then Aq)(z(2))=A~o(z(O)). By 
applying h, we deduce z(3)=z(1),  that is, T2y=y. This finishes the 
proof. I 

Remark. If we make the change of variables ~(n) = 7z(n) l/u, then ~(n) 
satisfies the evolution equation 

A(~(n) q-l) 
~(n + 1) = 

tlA(~(n) q- 1)ltq 

In this case ~o(x)=x q 1, h(x)=x/llxllq if x r  h(0)=0.  Also, II~(n)l!q= 1 
if 3(0) ~0.  Then ~ooh = (x/lbXllq) q-l, which is the same as (30), that is, q0oh 
is invariant under change of variables, as it should be. Then we can prove 
directly that the limit points ~ of (~(n):n>~0) satisfy ~=(hoAo~0)2~, 
[l~]lq = 1 (for solutions ~. ~0) .  

For large ferromagnetic interaction and in the absence of exterior 
magnetic field we obtain the following result: 

C o r o l l a r y  1. Let v be a Gibbs state [given by (19) and (20)] on 
the configuration space s = S Lee(q) .  Let N =  0 and K>~ 0. Define 

a=inf{[r,r]:reS},  f l=sup{[r ,s]:rCsinS} (33) 

Then, if one of the following conditions is satisfied, 

{ K(c~ - fl) > log(ISI - 1) 
K(c~-fl) >~log(]S]- 1) and 3!roeS such that c~= [ro, ro] (34) 

then the probability vector n = (v{cr e s : a(0) = r}: r e S) satisfies the 
equation 

~z = (hoA oq~)~, 7t~P1 (35) 

Proof. If K(c~-fl)-log(]SI- 1)>0,  note that 

&= (exp Kc 0 - ( ] S ]  - 1)exp Kfl>O 
Then 

= Y, a(r, >1 aIr, - Z a(r, Iz,I l sl 
r,s r ~ S  r # s  

>~6~z2,+(expKfl)(lSl-1)2z2, - ~ Izrl ]z~l 
r r r ~ s  

>~62z~+�89 2 (Izrl- [z,]) 2 
r r # s  
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Then 7/> 0 and ~ = 0 iff z = 0. So A is positive definite and the result follows 
from Theorem 3(a). If the second condition of (34) is satisfied, we put 

~' = inf{exp K[r, r] - exp Keo: r 4= ro } 

which is > 0. Then 

7>~' ~ z~+�89 ~. (IZrl-lz, I)2~O 
reS\{ro} r r  

Let zr '=(hoAoq~)n and z=~o(n ')-cp(~') .  By using the proof of 
Theorem 3, we deduce 7 = Zr., a(r, s) zrz ~ <~ O. Then 7 = 0, but this occurs iff 
z r=0 ,  VreS\{ro}.  Since ~r~Snr=~,r~Sg'r, we deduce ~ = ~ ' .  I 

Examples 

(a) If S =  { - 1 ,  1} or S =  {0, 1}, we deduce that the fixed-point 
equation (35) is satisfied by ~z for any positive ferromagnetic interaction 
K > 0  (and N = 0 ) .  In fact, if S =  { - 1 ,  1}, then a =  1, f l=  -1 ,  and the first 
condition in (34) is satisfied. When S =  {0, 1 } we have that the second 
condition in (34) is satisfied by taking ro = 0. The solution in this case will 
be given in Section 5. 

(b) Suppose that all the spin vectors are unitary, [r, r] = 1, Vrr S. 
Then 

fl = inf{cos O(r, s): r va s} 

where O(r, s) is the angle between spins r, s. The first condition in (34) 
reads K > ( l o g  I S ] - 1 ) ( 1 - / ? )  -1 . Then if IS] = 2  and the spin vectors are 
unitary and different, the fixed-point condition (35) is satisfied for any 
K > 0  (and N = 0 ) .  

4, PERIOD ~<2 L IMIT  ORBITS  OF S O M E  N O N L I N E A R  
D Y N A M I C S  ON ~s 

Some other results concerning the 2-period limit cycles for nonlinear 
dynamics on ~s+ can be established following the proof of our last result. 

The properties of A that we will require are the following: 

A is symmetric for inner product ( , )  in ~s: 
~Ax, y ) = ~ y ,  A x )  Vx, y ~  s (36) 

A ( ~ S \ { 0 } ) c  ~s+\{0} (37) 
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Recall that A given by (23) satisfies these properties. In fact, it satisfies 
a(r, s)=a(s ,  r), Vs, r, which is equivalent to satisfying (36) for the usual 
inner product in Rs and it is strictly positive, A > 0[a(r, s ) >  0, Vr, s 6 S], 
which is a sufficient condition in order that (37) is satisfied. 

Other sufficient conditions weaker than A > 0 for (37) are deduced in 
the following results (which include conditions usually improved by 
stochastic matrices). Recall that the period of a state r e S with respect to a 
matrix A>~0 is tlr=U.c.d.{n:a(n)(r, r ) > 0 }  and if A is irreducible, all the 
periods {~/r : r  e S} are equal; we call this common value the period of A. 

L e m m a  1. Let A/>0 be irreducible and symmetric with respect to 
the inner product < x , Y ) ~ = Z r e s e r X r Y r ,  where er>0,  VreS .  Then 
A ( N s \ { 0 } ) c  Rs \{0} .  Also in this case the matrix A is of period 1 or 2. 

Proof. Let x e ~ S \ { 0 } ,  so 3 r e S  such that x r # 0 .  If Ax=O,  then 
a(s,r)=O, VseS .  Now, A being symmetric with respect to <, >~ is 
equivalent to era(r, s )= g,a(s, r); then we deduce a(r, s )=0 ,  Vr~S.  The 
row and column r are 0, which contradicts the irreducibility of A. 

To prove that A is of period 1 or 2, it suffices to show a(r, r) (2~ # O, 
Vn>0, Vr~S,  where a(r,r) (2"~ is the (r,r) term of A ~. By putting 
a(s, s) ~~ = 1, Vs ~ S, we have 

a(r, r)(2")~> ~ a(r, s)a(s, s) (2" 2) a(s, r) 
s E S  

for n~> 1 

Let n be the small integer such that for some re  S, a(r, r)/2"/=0. Since 
a(s, s) (2n- 2~> 0, Vs e S, we get a(r, s)a(s, r ) =  0, Vs e S; then by symmetry of 
A with respect to <,>~ we deduce a(r , s )=O=a(s , r ) ,  VseS ,  which 
contradicts the irreducibility of A. II 

Theorem 6. Let A be symmetric, A>~0, such that A ( N S \ { 0 } ) c  
Ns \{0}  (for instance, if it satisfies the hypotheses of Lemma 1). Take 

A x  p 
T ( x ) - - -  for xe~S+\{0},  p > l ,  T (0 )=0  (38) 

FIAx'II 

for some norm I]" [!- Let O' c Rs  be the limit set of 7". Then the restriction 
T: O' -* O' is homeomorphism such that ~o, = ido', the identity on O'. 

Proof. We can decompose T=hoAo~o,  where ~o(x)=x p, h(x)=  
x/llxll if x # 0 ,  h(0)=0.  By the hypotheses, T maps Ns \{0}  into 
e ~ - - { x E  ~s:  Ilxll--1}. Then the limit set of T is O ' =  {0} w O, where 
O c PLI.IE is the limit set of the restriction of T to ~ s \ { 0 } .  

If [[xll = HXllp+l, then f ( x )  = q~oh(x)= (x / l [x l[p+l)  p if x4:0,  f ( 0 ) = 0 ;  
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it belongs to the subdifferential of IlXllp+ l and is equal t o f ( x )  of (30) with 
p = q - 1 .  Now the rest of the proof is analogous to that of Theorem 5 
because it only depends o n f  (the other facts used depend on the continuity 
of T on PIl-lrp+~)- 

Now we shall prove the result for any norm [Ill. We denote by 
h e, Tp, Dp, O'p= { O } w O p  the functions and sets related to Hxllp+l. We 
have h e o h = hp, h o hp = h, To hp = T, Tp o h = Te, h e o T = h e o Tp, h o T e = 
h o T on ~s+, so induction gives hpo T" = Tp, h o Tp = T" on ~s+. Let y ~ O; 
then hp(y )~  Oe, so T2pohp(y)= hp(y). This implies h o T 2 o h p ( y ) =  y; then 
T 2 o h p ( y ) =  y; finally, we deduce T 2 y =  y. Obviously T is continuous on 
the compact O', as T~, = ido,, it is a homeomorphism. I 

Let us summarize the results obtained for the nonlinear evolution of 
probability vectors. 

Corollary 2. Let P~ = {x ~ ~s+. ~ s x~ = 1 }, and A be symmetric, 
A ~> 0, such that A(~S+\{0}) c ~s+\{0}. Let p > 0. Then the following non- 
linear evolutions on P~, 

(Tx(n))r  = Xr(n + 1 ) 

= Z a(r, s)xs(n)e/ 2 Z ,(r', s)xs(n) e 
s e S  I r ' ~ S  sGS 

( T x ( n ) )  r = X r ( n  + 1) 

(39) 

/ 
= { ~ a(r, S ) X s ( n )  p / ( p + I )  

\ s E S  

have only limit probability vectors whose orbits are of period 1 or 2. 

Proof.  The result for the transformation (39) is just Theorem 6 for 
IIXlI=IrXlII=Zr~SXr(Xe~S) and (40) is the evolution studied in 
Theorem 5. | 

Now, if we see (39) as a generalization of a symmetric Markov chain, 
it is more convenient to write it as follows: 

Corollary 3. Let A be irreducible, A/> 0, A symmetric with respect 
to ( . ) ~  for some e = (gr > 0: r ~ S). Let p > 0. Then any limit probability 
vector of T given by (39) has period 1 or 2. 

Proof.  It follows by Lemma 1 that A(NS+\{0})c Rs+\{0}; then we 
apply Corollary 2 to obtain the result. II 
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Now we shall study other nonlinear evolutions on A s that also give 
rise to period ~<2 limit points. We study functions that generalize 
~o(x) = x p and we normalize their actions by means of the Orlicz norm that 
they induce. 

Let ~b: A+ ~ R+ be a nondecreasing, right continuous function such 
that ~b(0) =0, ~b(u) >0  when u > 0  and ~b(~)=l im,_ ~ ~b(u)= ~ .  

We say that ~b satisfies the (H) conditions. 
Also consider G~(u) = S~ (~(u') du'. 
Let S be finite; G~ induces a norm As called the Orlicz norm (see ref. 4 

for a proof it is a norm): 

[[xl'~=inf {k>O: ~ G~(~-~--)<~ I} 
r + S  

For x r 0 its norm Ilxll~ is the unique k > 0 satisfying the equality 

G + ( ~ - t = I ,  k =  ]lxll~ (41) 
r + S  

Recall that the class of functions ~bp(U)= [1/(p+ 1)] u p, p > 0 ,  satisfy the 
above conditions and blxll+= ]lx}lp+l. 

On ~s+ we take 
X 

- if x r  h + ( 0 ) = 0  (42) ~o++(x)=(~(xr):r~S), h++(x) Ilxll~ 

T h e o r e m  7. Let A be irreducible, A>~0, and symmetric with 
respect to some ( . )+;  +b satisfies the (H) conditions and also is continuous, 
strictly increasing. Then 

T~=h~oAo~p~ (43) 

is a homeomorphism when restricted to its limit set O' and satisfies 
((To)o,) 2= ido, (the identity on O'). 

Proof. An easy computation on (41) shows that II I]~ is differentiable 
on ~s+\{0} and its derivate 

O~(x) = (~Xr Ilx[I~'r~S) 
is given by 

?(Y) =- Ir +~s Yr q~CY,)] - l > O  
(44) 
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Define (b0(0) = 0; then the equali ty h o o A o (b 0 = h 0 o A o ~o 0 on ~s+. Hence we 
shall use the decompos i t ion  T o = hooA o ~ .  As f =  ~b 0 oh 0 = q5 0 on ~s+, the 
n o r m  [[x[10 is a convex potent ia l  associated to f Then [[A(oo(T~,x)l[o 
increases with n ~> 1 for any x E ~ s  (this follows f rom Theo rem 4). 

The limit set of  T 0 is O ' =  {0} u O ,  with O c P o =  {xeRS+:  IIx[[0 = 1} 
and T o ( 0 ) =  0. Let y e O; as T o is cont inuous  on the compac t  P0, there 
exists z ~ O such that  y = T~(z). By taking v(n)= A(oo(T~z), we deduce, as 
in the p roof  of  T h e o r e m  5, that  I[v(n)[[0 = M a cons tant  > 0  for any n ~>0, 
and also (~b0(v(2)), v(2) - v(0)> = 0. 

Let w(n)=v(n)/[[v(n)[io=v(n)/M. By definition of [['J[0 we have 
Zr~S Go(w~(n)) = 1. As 

~ o(v(n) ) = (o o(Mw(n) ) = V(w(n) ) q~ o(w(n) ) 

where V(w(n)) 4: O, we deduce (~p0(w(2)), w(2) - w(0)> = 0. 
N o w  define ~o(x)=~_,r~sGo(Xr), which is a potent ial  of ~P0 strictly 

convex because ~b is strictly increasing. F r o m  the above  equalities we 
deduce 

(~0(w(2)) - (?0(w(0)) = (q~(w(2)), w(2) - -w(0 )>  = 0 

F r o m  strict convexity of  G0, w ( 2 ) =  w(0), which implies T~ y = y. Then we 
obtain  the result. | 

A version of the above  result as a nonl inear  dynamics  on probabi l i ty  
vectors can be established. Let Go(x)=(Go(xr):r~S ) and G o  1 be its 
inverse in ~ + .  

C o r o l l a r y  4. Let A, ~b satisfy the hypotheses  of Theorem 7. Then 
the limit probabi l i ty  vectors  of the evolut ion 

~(n + 1)=Go~ ohooA o,:pooGolz~(n) (45) 

are of  per iod 1 or 2. 

Proof. Note  that  

T ' =  G 0oh 0oA o (o 0o G ~ I  = G 0oh 0oA o (b 0o G o 

maps  P1 into itself; in fact, hooA o ~oo G; 1 maps  P1 into Po, and G o maps  
P0 into P1. N o w  take h'=Gooh o, ~p'=q~ooGo~; then ( o ' o h ' = ~ b 0 o h  0, and 
by the p roof  of  the last theorem we deduce the result. | 
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5. F INAL C O M M E N T S  

A. Theorem 6 also gives us information about the dynamics of the 
transformation (t(p)(X) )r = Zs~ s a(r, s) x p on Ns+. In fact, "C(p)( 2X ) = ,~ P'c(X) 
for 2 ~> 0; then the images of two points in the same ray also belong to the 
same ray. Hence t(p) induces a transformation among the rays of Rs+ that is 
just given by T(x) of (38) (we can use any norm I111). Then t(p~ accum- 
mulates only orbits (of rays) of period ~<2 in this action. 

B. To get the one-site distribution of the Gibbs states in the Bethe 
lattice we must solve Eq. (22), ~ = T2~, rc ~ P~, where T =  h o A o (p is given 
by (23) and (24). From Theorems 5 and 6 and the Remark after Theorem 5 
we can first solve the equation 

~ = (h'oA o~0')2 ~, 

q ; ( x )  = x ~ -  1, 

Then the probability vector rc is given by 

~ # 0  

= x  h'(x) /,.~sXr 
(46) 

= ( # / l l ~ l l q )  ~ ( 4 7 )  

Let us note that p = q -  1, which is an integer > 0, and suppose that 
the number of spins is ISI =2.  Then ~ satisfying (46) is a couple 

= (m, 1 - m )  satisfying 

A(A~P)P=)~ for some 2 > 0  (48) 

Note that A = (~ ~); then the equation for ~ is reduced to 

m{b[am p+ b ( 1 -  m)P] p+ c[bm p + c ( 1 - m ) ; ]  p} 

( 1 - m ) { a [ a m  p + b ( 1 - m ) p ]  p + b[bm p + c ( 1 - m ) p ]  p} =0  

m e  [0, 1] (49) 

Now the biggest exponent in the above polynomial in m is m p2+ 1; its 
coefficient is 

~'~ (k)(ak+lbP-k-t-bk+lcP-knt-akb p+I k-}-bkcP+l--k)(--1)P(P--k) (50) 
k=0 

Then, if q is odd and p = 2p' is even, ( q -  1)2 + 1 is a bound for the 
different values of ~ satisfying Eq. (22). For  q even it can happen that all 
the coefficients of the polynomial (49) vanish; in this case any probability 
vector rc satisfies (22). If the polynomial (49) is not identically zero, its 
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degree ~ < ( q - 1 ) 2 +  1 is a bound  for the n u m b e r  of solutions ~z. If ]SI > 2 ,  
the analysis of solutions becomes  complicated.  

C. Consider  the case q = 2 (so p = 1) and S any finite spin set. Sup- 
pose A ~>0, A 2 irreducible (for instance A > 0 ) ,  P e r r o n - F r o b e n i u s  theory 
implies equat ion  (48): A 2 ~ = 2 ~  for ~ > 0 ,  ~ # 0 ;  has only one solution�9 

Such ~ also verifies A~ = x /~  4, then it is a fixed point  for t r ans format ion  T. 
Let us study the simplest case q =  2, IS] = 2. No te  as before A = (g ~). 

If  a = c = 0 [which does not  happen  for the matr ix  A given by (23) because 
A > 0] ,  then A = b( ~ ~) with b # 0. Then A2~ = )~ is satisfied for any ~ ~ ~2+ 
with 2 = b 2 ;  then any vector  ~ in P1 is a solution. ~ =  (1/2, 1/2) is the only 
fixed-point  solution, that  is, that  verifies 7r = T~; any other  solution is such 
that  ~ # T~. 

If a + c > 0, Eq. (49) becomes 

( a - c )  m 2 -  [ ( a - c ) -  2b] m - b = O  (51) 

which is the same equat ion  we get if we impose  A~ = 2~ for some 2 > 0. 
Then  any solut ion ~ is in this case a f ixed-point  solut ion g = T m  

If a = c ,  there is only one solut ion for (51): m = l - m =  1/2; then 
~ = ( 1 / 2 ,  1/2). N o w  a = c  is satisfied when S =  { - 1 ,  1}, N = 0 .  Let a # c .  

Let 6 = b/a - c. If 6 = 0, we get two solutions, m = 0, m = 1. For  6 > 0 it is 
easily shown that  the unique solut ion in [ 0 , 1 ]  is m ( 6 ) = 1 / 2 - 6 +  
1/2(1 +432)  1/2. Fo r  6 < 0  the unique solut ion is 1 - m ( - 6 ) .  

D. If A is not  symmetr ic ,  our  results cannot  be obtained�9 In fact, if 

l 
0 1 
0 0 

_ / I ~  �9 

0 0 

1 0 

is the cyclic matr ix  of order  n, then 
the evolut ion T =  h o A o ~b for any ~b, 
can also see that  orbi ts  of length n 
bations,  that  is, for 

A~__ �9 
g ~ 
1 ~ 

o o) 
1 0 

0 .-- 0 

0 .-. 0 

we have finite orbits of  order  n under  
h constructed in Sections 3 and 4. We 
cont inue to exist under  small per tur-  

g ... g l  

1 ... i 

where 0 < e ~ 1 (then A > 0). 
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E. When  0 e A ( ~ + \ { 0 } ) ,  the results obtained in Sec t ion4  for any 
one of  the t ransformat ions  T = h o A o rp studied are little modified. In fact, it 
can be shown that the orbits of  the limit points are of  the form 
( y , z ,  y,z, . . . )  or (y,z ,O,O,. . . )  with y, ze~S+.  

F. If A is symmetric  positive definite [for  instance, if A satisfies the 
first condi t ion of (34)] ,  the solutions satisfy the following "generalized 
eigenvalue equat ion":  

A~P=/ t~  with 2 > 0 ,  ~>~0, ~ C r = l  (52) 
r ~ S  
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