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The One-Site Distribution of Gibbs States
on Bethe Lattice Are Probability Vectors
of Period <2 for a Nonlinear Transformation

Eric Goles' and Servet Martinez'
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We prove that the one-site distribution of Gibbs states (for any finite spin set .S)
on the Bethe lattice is given by the points satisfying the equation = = T?x, where
T=hoAoq, with ¢(x)=x"9"14 h(x)=(x/|x],), A= (a(r,s):r,se8), and

al(r, sy=exp(K[r, s]1+ (1/g)[N, r+s])

We also show that for 4 a symmetric, irreducible operator the nonlinear
evolution on probability vectors x(n+ 1)= Ax(n)?/||Ax(n)?||; with p>0 has
limit points ¢ of period <2. We show that A4 positive definite implies limit
points are fixed points that satisfy the equation A¢? = A¢. The main tool is the
construction of a Liapunov functional by means of convex analysis techniques.

KEY WORDS: Gibbs states; Bethe lattice; spin vector; dynamical systems;
automata networks; subdifferential; cyclically monotone function; convex

function; Liapunov functional.

1. INTRODUCTION

We study nonlinear dynamics having associated limit points of period ¢ <2.
The main applications of these results are made in the description of the
Gibbs states of the Bethe lattice. We also show that results obtained can be
viewed as a nonlinear generalization of symmetrical Markov chains.

In Section 2 we introduce the mathematical techniques we use. They
were first developed™® to analyze the dynamical behavior of automata
networks related to neuronal activity models. The dynamical systems we
study can be written as T=%ho Ao @, where A is a symmetric operator and
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f=e@oh is in the subdifferential of a convex function. The fundamental
tools to analyze these systems are the Liapunov functionals, which are
constructed in Theorem 1. To obtain them we use concepts from convex
analysis. In Theorem 2 we discuss conditions that, imposed on the
Liapunov functionals, imply that finite orbits can only have period <2. We
can also establish hypotheses that allow us to assert that finite orbits are
only fixed points and some other hypotheses implying that there is only
one fixed point, any other finite orbit being of period 2 (Theorem 3). We
finish Section 2 by characterizing the relevant functions in our applications,
those that belong to subdifferentials of seminorms. In this case the
Liapunov functional takes a simple form (Theorem 4). Some of these
results were established in a more restricted framework in refs. 1-3.

In Section 3 we study the Gibbs states v on the configuration space
St=l4) where S is a finite spin set and L_(q) the Bethe lattice of coor-
dination number ¢. We assume that v is obtained by the thermodynamic
limit taken with L,(q)— L(g), with L,(q) the Cayley tree of coordination
number g constructed until the shell n. The Hamiltonian (for $“%)) is

Hla)= (K3 Lot o]+ 3 [V, o(0) )

where 3, ; is over neighbor sites, X is the interaction, and N is the exterior
magnetic field. We prove that the probability vector n=(v{o:6(0)=r},
reS) satisfies the equation n=(hoAo-@)*n, where ¢(x)=x"9"14
h(x)=(x/llx|l,)% and A is the matrix given by

a(r, s) =exp(K[r, s1+ (1/q)[N, r+s]) for r,5e8

(Theorem 5). In obtaining this equation we use the results of the present
section and the recursive equations for the Gibbs states on %9 obtained
in ref. 7. By using the same method as in Theorem 3, we deduce that for
large ferromagnetic iteration K> 0 (it suffices that K> 0 for |S| =2) and
under the absence of exterior magnetic field, N =0, the equation for = is
reduced to n=(heAd-@)m.

In Section 4 we study some nonlinear dynamics on R?, whose limit
points are orbit of period <2. This allows us to assert in Corollary 3 that
the nonlinear evolution

2 a(r, s)n,(n)?
Zr’eS ZSES a(r,, s)n,,(n)”

of probability vectors has only limit points of period ¢<2, where
(a(r, 5): 7, s€ S) is symmetric. This generalizes the equations obtained for

n=z0 reS

n(n+1)=
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limit points of symmetric Markov chains, which in fact satisfy the equation
n = A’r; recall that 4 is symmetric, so its period is <2. (But the results
known for Markov chains are stronger because they characterize com-
pletely the domain of attraction of any one of the probability vectors
satisfying m = A’ and also they describe these points.) In Corollary 4 we
obtain similar results for other transformations than ¢(x)=x” which also
give rise to period <2 behavior of limit probability points {(we use Orlicz
space theory).

In Section 5 we establish the consequence of our results when we study
evolution equations 4x” in R, It induces a transformation on the rays that
also have period <2 limit behavior when A is symmetric. We also give a
bound for the number of solutions of the one-site distribution of Gibbs
states when |S|=2 and we detail these solutions for case g=2
[L,(2)=7] and S={0,1}. For a deeper description of solutions in the
case S= {0, 1}, ¢ =2, see ref. 6, and ref. 9 for the case g =2. Results in the
case |S|=2,g=3 were first obtained in ref 8. Recent relevant results,
obtained in a more general framework can be found in ref. 10.

2. PRELIMINAR RESULTS

The evolution equation we shall study takes the following form in a set
D included in a real Hilbert space (H, { >):

x(n+1)=Tx(n), T=hoAdoq, for x(0)eD (1)
where op: Dc H— Fc H, A: H— H, and h: F - D satisfy

A is a symmetric linear operator such that A(F)c= F (2)

f=@oh 1s cyclically monotone on the closed
convex set F (3)

which means that for any cycle (ug,..., U, 1, Uy =tg)EF™ T, m=2, we
have

m—1

Y S )= S, ui > 20 (4)
i=0
We call f strictly cyclically monotone if it is cyclically monotone and for
any nontrivial cycle (uq,..., 4, _,, U,, =Uy) such that there exists some
0<k<<m—1 with u, #u, ., we have

N Sl ) = S, w4y > >0 (5)
=0

I
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It can be shown that f is cyclically monotone iff it belongs to the sub-
differential of a convex potential, so there exists g: F — R convex such that

gu) = gv)+ (fv)u—v),  VYuveF (6)

[ is strictly cyclically monotone iff g is strictly convex. In this case we
have?

gu)—glw)={f(v),u—v)  implies u=v (7)

Recall g*: H—> R U {— o0, o0}, the polar of g, satisfies

g*(v) =sup (<u, v) — g(u)) (8)

uefF

Then, since g is a convex potential of f, we deduce

g (W) + glv)=Lv, f(v))  for veF 9)

The main results characterizing the finite orbits of the dynamical
system T=hoAo¢ are as follows.

Theorem 1. Let 4, ¢, and A satisfy (2) and (3); then
H(x(n))= —g*(o(x(n))) + g(Ap(x(n))) ~ withn>1 (10)

so H(x(n)) is a Liapunov functional increasing with n> 1.

Theorem 2. Let 4, ¢, and £ satisfy (2), (3), and (5), so @oh is
strictly cyclically monotone. Then, if (x(0),..., x(r —1), x(£)=x(0)) is a
periodic orbit, then it is of length < 2.

Theorem 3. Let 4, ¢, and A satisfy (2) and (3) such that any
periodic orbit is of length ¢ <2 [for instance, if /= ¢ o & satisfies (5)]; then:
(a) if A4 is positive definite, then the periodic orbits of 7 are only fixed
points (£=1); (b) if 4 is negative definite, 0 F, and ¢ < #(0) =0, then A(0)
is the only fixed point of T and any other periodic orbit is of length ¢=2.

Proof of Theorem 7. From (9)

—g*(p(x(n+1))) = —g*(@-h(4de(x(n))))
= g(Ap(x(n)))
—{Ap(x(n)), p(h(Ao(x(n)))) >
= g(Ap(x(n)))
—{Ap(x(n)), p(x(n+1))>
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Then
H(x(n+1))= —{Ap(x(n)), o(x(n+1))>
+g(A@(x(n))) + g(Ap(x(n + 1})) (11)
For n> 1 define
A(n) = H(x(n+ 1)) — H(x(n)) (12)
If we put u(n) = Ap(x(n)), we get
@(x(n+ 1)) =@ o h(Ap(x(n))) = f(u(n))
By symmetry of 4 we obtain
A(n)= —{f(u(n)), u(n +2) —u(n)) + glu(n +2)) — glu(n)) ~ (13)

Since g is a potential of f, we deduce A(n)>0, Vn>1; then, H(x(n))
increases for n=1. |

Proof of Theorem 2. 1If (x(0),.., x(t —1), x(t)=x(0)) is a periodic
orbit and the functional H(x(n)) is constant for n >0, then 4(n)=0. From
(13) and the strictness condition on f we deduce u(n+2)=u(n). By
applying h, we get x(n+3)=x(n+ 1) for any n>0, then the result. {

Proof of Theorem 3. Let (x(0), x(1)) be the periodic orbit; then
x(n)=x(n(mod 2)).

(a) Let
7= {@(x(0)) — o(x(1)), A(0(x(0)) — @(x(1)))>
= {@(x(0)), Ap(x(0)) — Aop(x(1))>
+ <o(x(1)), Ap(x(1)) — Ap(x(0))

Now since we have a 2-periodic orbit x(n+ 1)=x(n— 1), we deduce

(p(x(n)), Ap(x(n)) — Ap(x(n + 1))
= (@ oh(Ap(x(n+1))), Ap(x(n)) — Ap(x(n+ 1))
< g(Ag(x(n))) — g(do(x(n+1)))

Then y < 0. since A is positive definite, we deduce ¢(x(0))=¢(x(1)); by
applying ho A, we obtain x(1) = x(0).

822/52/1-2-18
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(b) From the hypothesis, A(0) is a fixed point. Now, suppose
x(1)=x(0) is a fixed point. We have

2(0) > g(A(x(0))) + <@ h(Ap(x(0))), —A@(x(0)))
= g(A49(x(0))) — {o(x(0)), 49(x(0))>

Since ¢ h(0)=0 and g is a convex potential of @4 from (9), we conclude
that g(0) is a global minimum of g, so {@(x(0)), 4¢(x(0))> = 0. Since 4 is
negative definite we get {¢@(x(0)), Ap(x(0))> =0; then ¢(x(0))=0. By
applying /o A, we obtain x(0)=h(0). ||

The most important applications concern functions ¢, 4 such that
f= @oh belongs to the subdifferential of a seminorm g (as occurs for some
cellular automata where f'is the sign function®?)). In this case the strictness
hypothesis of Theorem 2 is not satisfied, but for some of these functions we
will be able to show the conclusions of Theorem 2, then also those of
Theorem 3 (we do this in the following sections). Now let us describe this
class of subdifferentials and characterize the Liapunov functional H(x(n))
for a class of functions containing them.

Theorem 4. If f =@k satisfies
{Sfu)—fv),u>=0 Vu,ve F (14)
then
gu)=<u, fu)>, ueF (15)
is a convex potential of / and
H(x(n))= g(Ap(x(n))) » fornz1 (16)
Furthermore, if f satisfies (14) for F= H and also satisfies
Sflu),uy=—{f(—u)uy  VueH (17

then its potential g(u)= (u, f(u)) is a seminorm. Conversely, if f belongs
to the subdifferential of a seminorm g, then g(u)= {u, f(u)) and f satisfies
(17) and (14) for F=H.

Proof. From (14) we obtain directly g(v)= g(u)+ {f(u), v—u);
then g is a potential of £ From (9) and (15) we get g*(f(v))=0. Since

@(x(n)) =@ oh(de(x(n—1)))= f(u(n—1))

for n =1 we get g*(p(x(n))) =0. By replacing it in (10), we get (16).
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Now, if f satisfies (14) and (17) it is easy to show that g is a
seminorm.® Conversely, if g(«) is a seminorm, then it is convex and any of
its subdifferentials f satisfy

gQu)=2g(u) = g(u) + <u, f(u)>, g(0)=02 glu)—<u, flu)>

Then g(u)= {u, f(u}). Equality (17) follows from g(u)= g(—u), and
mequality

(o, flv)) = g(v) =2 g(u) + {flu), v—up = u, flu)) + {fw), v—u>
implies (14) for F=H. |

3. APPLICATIONS IN THE BETHE LATTICE

Let g > 2. Consider the graph constructed as follows: we start from a
central point 0 and we add g points all connected to 0. Call these new
points the shell 1. The shell k + 1 is constructed by connecting ¢ — 1 new
points to any point of the shell k. The graph constructed until the shell # is
denoted L,(q) and the infinite graph obtained for n — oo, denoted L ,(g), is
called the Cayley tree of coordination number ¢. Recall that L {2} =Z.

For L,(q) the number of points of the boundary and the number of
points of the graph grow like (g —1)". Then some problems appear when
we try to describe the thermodynamic limits of Ising models on L_,(g). We
shall only consider those thermodynamic limits arising from limits
L. {q)—=Ly(gq), n—> o [and not from other sequences A,— L_(g),
n— o]

When we consider only local properties infinitely far from the boun-
dary in the limit n — o0, as we shall do, all sites of L_(q) are equivalent
and it is called the Bethe lattice.

Let S« R be a finite spin set; we denote by [, ] the inner product on
R“ We shall consider 2, =S for ne Nu {0} (2, is the configuration
space) and by «,,:2,, —Q,, 0 - 0|, the restriction of ¢ to the coor-
dinates of Q, for n<m < .

For # finite the partition function on L,{g) is given by

Z,= 3 ewl—Ho)) H{o)= ~{K T [o() al)]+ V.ot }

oceQ, (4.7}

(18)

where the sum 3, ;) is over all neighbor couples (i, ) and ¥, over all the
sites  of the tree L,(g). The parameter K &R is the interaction (K> 0 if it is
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ferromagnetic, K <0 if it is antiferromagnetic) and Ne R? is the exterior
magnetic field.
The Gibbs law on , is denoted by pu,,; it satisfies

po{oeR,:0(i)=r,ieL,(q)}

=z > exp[ —H,(0)]

{loeQuo(i)=r,icLylg)}

As L,q)— L.(q), n— oo, by diagonal arguments there exists a sub-
sequence n’ — oo such that the following limits exist (in the sense of vague
convergence of measures):

lim o, p,=v,, V=1 (19)

n' — o

Furthermore, there exists a unique measure v on the configuration space
Q_ such that

v=yv

an,oo n (20)

The measure v is a Gibbs state.”®
We shall study the one-site distribution of this class of Gibbs states:

n=(n,.res), n,=v{ceR:0(0)=r} (21)
Since all sites in the Bethe lattice are equivalent we have

n,=v{ceR a(i)=r} forany ieL(q)

Theorem 5. Let v be a Gibbs state on Q_ = S given by (19),
(20). Then the one-site distribution of this Gibbs state which is given by
(21) is a probability vector 7, which satisfies the equation

n=(hodop)n (22)
where h, 4, and ¢ act on R\ {0} and are given by

A= (a(r,s):r,s€S), a(r, s) =exp (K[r, s] +$ [N, r+s]> (23)

o =3 = () (24)

il

where x? = (x7:reS), and | -|, is the L?-norm.
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Proof. Let v be a Gibbs state and (v,,), n’ — oo, satisfying (19), (20).
We note that A,(r)={ceQ,:a(0)=r} for ne NuU {c0}. We have

vl A, (r) =v(e; 5 (4,(r) =v(4d,(r))=m,

On the other hand,

ValAd,(r)) = lm (o, pu,)(4,(r))= lim p,(4,(r))

n — o n — o

Note that n(n) = (z,(n): re S), where n,(n) = pu,(4,(r)); then
n= lim =n(n’) (25)

n —w

Let I'={n(n):neN}, so if we also show that the set of accumulation
points of I" satisfy (22), the theorem will be proved.

By the construction of the Cayley tree it can be shown'”’ that there
exist functions W,(r) such that the following relations hold:

. (n) =exp[N, r](W,(n))* { Y. exp[N, S](Ws(n))"}A (26)
Wn)= 3 exp(K[r, s]1+ [N, sH(Wn—1))""" (27)

Let us denote

¢, =3, exp[N, s](W(n))*

seS

Then we get

r. ()= exp(KLr, sT+ [N, s]) exp (é [N, r])

sesS

—1
e =19~ exp = T2 [N, 51 ) el
q
Then

m(n)"=(c, e D)V 3. exp(K[r, s1)

ses

1
X eXp (; [N, r+s]> my(n— 1)1
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From ¥, s 7,(n) =1 we have |[n(n)"/||,=; then necessarily
(c; leg= 1) = | A(m(n— 1))~ Ve -1

(remark that 4 maps RS\ {0} into itself). By using (23) and (24) we finally
get

n(n)=(hoA-@)n(n—1) (28)

Take T=hoAo@; it maps RS\{O} in the simplex P, ={yeRS:
Y. cs y,=1}; then its limit set @, is given by

@,={yeP,:3xe P, a subsequence n” — o

such that y = lim T"x} (29)
We have that the set of accumulation points of I' is included in @,; then
the theorem will follow when we show that any point ye P, satisfies
Eq. (22), that is, y = T?y. This will constitute our next resuit.
Now let us extend ¢, 4 to F=RS such that 4(0)= ¢(0)=0; then

X

Ixl,

f(x)=qooh(x)=< )q if x+£0, f(0)=0 (30)

belongs to the subdifferential of g(x)=||x||,. The limit set of T acting on
RS is {0} L O,.

Take ye @,; then dxe P, and n” - oo such that y=1lim,. , 7" 'x.
We have that 7 maps the compact P, into itself; then there exists a
subsequence n” < (n” —1) such that there exists z=1im,._  T" x. By
continuity of 7 on P; we get Tz= y.

Note v(n) = Ap(T"z). The operator A is symmetric; then we can apply
(16), so ||Ap(T"x)|, increases with n>1 to a finite quantity M. By
continuity, [v(n)ll,=M, Vn>0. And also by continuity on A(n) [see (12),
(13)] we get {f(v(2)), v(2)—v(0)> =0. Then we obtain

lo(2)Il, = v(0)Il, + <f(©(0)), v(2) — v(0) > (31)
Now, from the equalities
Cf(w(0)), v(0)> =1v(0)ll,,  No(O)IZ "= [v(0) g1y

expression (31) becomes

()l 10(0) ™ Mgy -1y = <0(0)7 1, 0(2) > (32)



Gibbs States on Bethe Lattice 277

that is, the Holder inequality becomes an equality; then there exist A, 2’ %0
such that A(v(2))?=2'(v(0)?")¥“~Y which implies v(2)=A"v(0). Since
o), =v(0)ll,, we deduce v(2)=0v(0); then A@(z(2))=Ap(z(0)). By
applying 4, we deduce z(3)=2z(1), that is, T?y=y. This finishes the
proof. |

Remark. 1f we make the change of variables £(n) = n(n)"%, then &(n)
satisfies the evolution equation

AR
St D =@,

In this case @(x)=x9"", h(x)=x/l x|, if x#0, h(0)=0. Also, [{(n)]|,=1
if £(0) #0. Then ¢ o i = (x/|x|,)? ", which is the same as (30), that is, o &
is invariant under change of variables, as it should be. Then we can prove
directly that the limit points ¢ of (&(n):n=0) satisfy &= (hodo@)* ¢,
1€]l,= 1 (for solutions £ #0).

For large ferromagnetic interaction and in the absence of exterior
magnetic field we obtain the following result:

Corollary 1. Let v be a Gibbs state [given by (19) and (20)] on
the configuration space Q2 = S*=¥), Let N=0 and K> 0. Define

a=1inf{[r,r]: re S}, B=sup{[r,s]:r#sin S} (33)

Then, if one of the following conditions is satisfied,

{K(a——ﬁ)>log(]S|—1) (34)
K(x— B)>1log(|S| — 1) and 3!rye S such that a=[ry, ro]

then the probability vector n=(v{ceQ,:0(0)=r}:reS) satisfies the
equation
n={(hoAo@)mn, ne P, (35)

Proof. 1f K(a— ) ~1log(|S| —1)> 0, note that

0=(exp Ka)—(|S|—1)exp KB>0
Then
y=2alrs)z,z,2 Y, alr,r)z2 =Y a(r,s)|z,| |z,

r,s res§ r#s

20 27+ (exp KB)(ISI 1) Y. 22— % Iz,] |z

r#£s

2063 22 +4(exp KB) ¥ (lz,] —z)

r¥#s
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Then y=0and y=0iff z=0. So A4 is positive definite and the result follows
from Theorem 3(a). If the second condition of (34) is satisfied, we put

o' =inf{exp K[r, r] —exp Kug: r #ry}

which is >0. Then

y26" Y z;+iexpKp) Y (Iz,]—|z,])*=0

re S\{ro} r#*s

Let n'=(hoAde@p)n and z= <p(ﬁ’)—<p(n’). By using the proof of
Theorem 3, we deduce y =3, a(r, s) z,z,<0. Then y =0, but this occurs iff
z,=0,YreS\{ry}. Since 3, sm,=3, .57, we deduce n=7n". |

Examples

(@) If S={—1,1} or §={0,1}, we deduce that the fixed-point
equation (35) is satisfied by = for any positive ferromagnetic interaction
K>0 (and N=0). In fact, if S={—1, 1}, then a =1, = —1, and the first
condition in (34) is satisfied. When S= {0, 1} we have that the second
condition in (34) is satisfied by taking r, = 0. The solution in this case will
be given in Section 5.

(b) Suppose that all the spin vectors are unitary, [r,r]1=1, VreS.
Then

B =inf{cos O(r, s): r #s}

where 0(r, s) is the angle between spins r,s. The first condition in (34)
reads K> (log |S| —1)(1 —B)~" Then if |S| =2 and the spin vectors are
unitary and different, the fixed-point condition (35) is satisfied for any
K>0 (and N=0).

4. PERIOD <2 LIMIT ORBITS OF SOME NONLINEAR
DYNAMICS ON RS

Some other results concerning the 2-period limit cycles for nonlinear
dynamics on RS can be established following the proof of our last result.
The properties of 4 that we will require are the following:

{A is symmetric for inner product <, > in RS: (36)

(Ax, y> =<y, Ax> Vx, yeR®
ARIN{0}) =R5\{0} (37)
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Recall that 4 given by (23) satisfies these properties. In fact, it satisfies
alr, s)=a(s, r), Vs, r, which is equivalent to satisfying (36) for the usual
inner product in R® and it is strictly positive, 4> 0[a(r, s)>0, Vr,se 5],
which is a sufficient condition in order that (37) is satisfied.

Other sufficient conditions weaker than 4 >0 for (37) are deduced in
the following results (which include conditions usualiy improved by
stochastic matrices). Recall that the period of a state e S with respect to a
matrix 420 is q,=u.cd.{n:a”(r,r)>0} and if 4 is irreducible, all the
periods {#,:re S} are equal; we call this common value the period of 4.

Lemma 1. Let A>0 be irreducible and symmetric with respect to
the inner product {x, y>.=3,.s&,X,7,, Where ¢,>0, VreS. Then
A(RS\{0})= RS\ {0}. Also in this case the matrix A is of period 1 or 2.

Proof. Let xe R5\{0}, so 3re S such that x,#0. If Ax=0, then
a(s,r)=0, VseS. Now, A being symmetric with respect to ¢, ), is
equivalent to ¢,a(r, s)=c¢,a(s, r); then we deduce a(r, s)=0, VreS. The
row and column r are 0, which contradicts the irreducibility of 4.

To prove that 4 is of period 1 or 2, it suffices to show a(r, r)* 30,
¥n>0, VreS, where a(r,r)® is the (r,r) term of A4”. By putting
a(s, s} =1, Vse S, we have

a(r,r)® =Y a(r, s)a(s, s)* Pa(s,r)  for nx1

seS§

Let n be the small integer such that for some re S, a(r, r)® =0. Since
a(s, s)*" =2 >0, Vse S, we get a(r, s)a(s, r) =0, Vs € S; then by symmetry of
A with respect to <,>, we deduce a(r,s)=0=a(s,r), VseS, which
contradicts the irreducibility of 4. ||

Theorem 6. Let 4 be symmetric, 4 >0, such that 4(RS\{0})c
RS\ {0} (for instance, if it satisfies the hypotheses of Lemma 1). Take

Ax?
T(x)=—— f RS 1 =
(x) A or xeRS\{0}, p>1, T(0)=0 (38)
for some norm {|-||. Let @ < RS be the limit set of 7. Then the restriction

T: @' — @' is homeomorphism such that 7%, =id,., the identity on ©'.

Proof. We can decompose T=hoAo-p, where @(x)=x? h{x)=
x/lix]l if x#0, A(0)=90. By the hypotheses, T maps RS\{0} into
P y={xeRS:|x||=1}. Then the limit set of T is @' = {0} U O, where
O c P, is the limit set of the restriction of T to RS\ {0}.

I flx] = llx] 5+ 1> then f(x) = o h(x) = (x/|x]|, )" if x#0, f(0)=0;
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it belongs to the subdifferential of || x| ,,, and is equal to f(x) of (30) with
p=q—1. Now the rest of the proof is analogous to that of Theorem 5
because it only depends on f (the other facts used depend on the continuity
of Ton P, )

Now we shall prove the result for any norm |-|. We denote by
hy, Ty, Dy, ©,={0} U6, the functions and sets related to ||x|,,,. We
have h,oh=h,, hoh,=h, Toh,=T, T, h T,, hyoT=h,T,, hoT,=
ho T on RY, so induction gives h,o T"=T", he T” T" on RS Let ye@
then 4,(y)e@,, so Toh,(y)=h,(y). ThlS 1mp11es hoTZoh (y) y; then
T?oh,(y)=y; finally, we deduce T?y= y. Obviously T is continuous on
the compact @', as T3 =idg., it is a homeomorphism. |

Let us summarize the results obtained for the nonlinear evolution of
probability vectors.

Corollary 2. Let P,={xeRS:),_¢x,=1}, and A be symmetric,
A 20, such that A(RS\{0})= RS \{0} Let p > 0. Then the following non-
linear evolutions on P,

(Tx(n)), = x,(n+1)

=3 a(r,s) n)”/ Yo Y a(r, s)x(n)” (39)

seS r'eS seS

(Tx(n)),=x,(n+1)

= ( Z a(r, s)xs(n)”/(”*“

se S

X{ Z |:Z a(r’, S)xs(n)l’/(p+1):|p+l}Ap/(”+1)>p+1 (40)

reS Lses
have only limit probability vectors whose orbits are of period 1 or 2.

Proof. The result for the transformation (39) is just Theorem 6 for
[xll=lxl;,=3,csx(xeRS) and (40) is the evolution studied in
Theorem 5. ||

Now, if we see (39) as a generalization of a symmetric Markov chain,
it is more convenient to write it as follows:

Corollary 3. Let 4 be irreducible, 4 >0, A symmetric with respect
to (-, for some ¢=(¢,>0:r€S). Let p>0. Then any limit probability
vector of T given by (39) has period 1 or 2.

Proof. 1t follows by Lemma 1 that 4(RS\{0})<=RS5\{0}; then we
apply Corollary 2 to obtain the result. ||
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Now we shall study other nonlinear evolutions on RS that also give
rise to period <2 limit points. We study functions that generalize
¢@(x) = x? and we normalize their actions by means of the Orlicz norm that
they induce.

Let ¢: R, — R, be a nondecreasing, right continuous function such
that ¢(0)=0, ¢(u) >0 when u>0 and ¢(cc)=1lim, _, ,, ¢(u)= 0.

We say that ¢ satisfies the (H) conditions.

Also consider G,(u)=[§ $(u') du'.

Let S be finite; G, induces a norm R* called the Orlicz norm (see ref. 4
for a proof it is a norm):

Hx|]¢=inf{k>0: T G, ("Z‘)g 1}

resS

For x #0 its norm | x| 4 is the unique k >0 satisfying the equality

xr
¥ 6,(5d)-1 k=l (41)
resS
Recall that the class of functions ¢,(u)=[1/(p+1)]u”, p>0, satisfy the
above conditions and |lx| ,, = lxll ;-
On RS we take
PAX)=(Blx ) reS),  hX)=pim X0 h(0)=0 (42)
¢
Theorem 7. Let A be irreducible, 4A>0, and symmetric with
respect to some < -),; ¢ satisfies the (H) conditions and also is continuous,
strictly increasing. Then
T,=hsoAoq, (43)

is a homeomorphism when restricted to its limit set ®' and satisfies
((T,)e)? =idg (the identity on @’).

Proof. An easy computation on (41) shows that ||- |, is differentiable
on RS\{0} and its derivate

0
6400 =5

||x[3¢:reS>

r

(XN [ x
"’“’(x)‘y<uxu¢>“’¢<nxn¢>

-1 (44)
yWy)= [ ) yr¢(y,)] >0

resS

is given by
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Define ¢ 4(0) = 0; then the equality 2,0 Ao ¢ =hy oA, on RY . Hence we
shall use the decomposition Ty=hs0 Ao p,. As f= @ oh;=d4 on RS, the
norm |x|l, is a convex potential associated to f. Then (4@ (T;x)|,
increases with n>1 for any x € RS (this follows from Theorem 4).

The limit set of T, is @' = {0} U @O, with @ c Py={xe RS : |x|,=1}
and T4(0)=0. Let ye®; as T, is continuous on the compact P, there
exists ze @ such that y = T(z). By taking v(n) = A4¢,(T}z), we deduce, as
in the proof of Theorem 5, that v(n)|,= M a constant >0 for any n>0,
and also <@4(v(2)), v(2) —v(0)> =0.

Let w(n)=uv(n)/|lv(n)l;=v(n)/M. By definition of [-|, we have
ZreS G¢(wr(n)) = 1 AS

Py(v(n)) = @y(Mw(n))=y(w(n)) ¢ ,(w(n))
where y(w(n)) #0, we deduce {¢@,4(w(2)), w(2)—w(0)) =0.
Now define G¢(x)=Z,EsG¢(x,), which is a potential of ¢, strictly

convex because ¢ is strictly increasing. From the above equalities we
deduce

Gy(w(2)) = G 4(w(0)) = Co(w(2)), w(2) = w(0)> =0

From strict convexity of G¢, w(2)=w(0), which implies T} y = y. Then we
obtain the result. |

A version of the above result as a nonlinear dynamics on probability
vectors can be established. Let Gy(x)=(G4(x,):reS) and G, ' be its
inverse in R, .

Corollary 4. Let A4, ¢ satisfy the hypotheses of Theorem 7. Then
the limit probability vectors of the evolution

nn+1)=G, ohyoAep,o G, ln(n) (45)
are of period 1 or 2.
Proof. Note that
T'=GyohyodoueGyl=GyohyododyoG,'
maps P, into itself; in fact, hyo 4>, G, ' maps P, into Py, and G, maps

P, into P,. Now take h'=G,ohy, ¢'=p,oG, ;s then @' oh'= ¢, h,, and
by the proof of the last theorem we deduce the result. ||
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5. FINAL COMMENTS

A. Theorem 6 also gives us information about the dynamics of the
transformation (t,,(x)), =X csa(r, s) x2 on RS In fact, 7(,,(Ax) = A”t(x)
for 22 0; then the images of two points in the same ray also belong to the
same ray. Hence 7, induces a transformation among the rays of R that is
just given by T(x) of (38) (we can use any norm [|-||). Then t,, accum-
mulates only orbits (of rays) of period <2 in this action.

B. To get the one-site distribution of the Gibbs states in the Bethe
lattice we must solve Eq. (22), n = T?n, ne P,, where T=ho Ao ¢ is given
by (23) and (24). From Theorems 5 and 6 and the Remark after Theorem 5
we can first solve the equation

E=(Wodo@' V& E#£0
(46)
9'(x)=x""", h'(x)=X/ Y X

reS

Then the probability vector = is given by

n=(&/1<N,)* (47)

Let us note that p=g— 1, which is an integer >0, and suppose that
the number of spins is |S|=2. Then ¢ satisfying (46) is a couple
&= (m, 1 —m) satisfying

A(AEPYP = A forsome A4>0 (48)
Note that 4 = (¢ %); then the equation for ¢ is reduced to
m{b[am” + b(1 —m)?]? + c[bm” + c¢(1 —m)? 1"}
(1 —m){alam? + b(1 —m)?]? + b[bm* + c(1 —=m)*]?} =0
me [0, 1] (49)

Now the biggest exponent in the above polynomial in m is m” 1 ts
coefficient is

i (i) (ak+lbp—k+bk+1cp-k+akbp+lfk+bkcp+lék)(_l)p(p—k) (50)
k=0

Then, if ¢ is odd and p=2p’ is even, (¢g—1)*+1 is a bound for the
different values of 7 satisfying Eq. (22). For ¢ even it can happen that all
the coefficients of the polynomial (49) vanish; in this case any probability
vector = satisfies (22). If the polynomial (49) is not identically zero, its
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degree <(¢—1)>+1 is a bound for the number of solutions z. If |.S| > 2,
the analysis of solutions becomes complicated.

C. Consider the case g=2 (so p=1) and S any finite spin set. Sup-
pose A >0, A? irreducible (for instance 4 >0), Perron-Frobenius theory
implies equation (48): A?¢=A¢ for ¢>0, £+#0; has only one solution.
Such ¢ also verifies A& = ﬂ £, then it is a fixed point for transformation T.

Let us study the simplest case g =2, |.S| =2. Note as before 4 =(¢ 2).
If a = ¢ =0 [which does not happen for the matrix 4 given by (23) because
A>0], then 4 =5(9 [) with b #0. Then 4*¢ = A¢ is satisfied for any & e R2
with A= b?% then any vector n in P, is a solution. © = (1/2, 1/2) is the only
fixed-point solution, that is, that verifies = = T'r; any other solution is such
that 7 # T

If a+ ¢>0, Eq. (49) becomes

(a—c)m*—[(a—c)—2b]m—b=0 (51)

which is the same equation we get if we impose A& = A¢ for some 4> 0.
Then any solution = is in this case a fixed-point solution n = Tr.

If a=c, there is only one solution for (51): m=1—m=1/2; then
n=(1/2,1/2). Now a=c is satisfied when S={—1,1}, N=0. Let a#c.
Let 6 =b/a—c. If 6 =0, we get two solutions, m=0, m=1. For § >0 it is
easily shown that the unique solution in [0,1] is m(d)=1/2—6+
1/2(1 4+ 456)"2. For 6 <0 the unique solution is 1 —m(—§).

D. If 4 is not symmetric, our results cannot be obtained. In fact, if

010 - 0
001 -0
A=1]
000 -0
100 --- 0

is the cyclic matrix of order », then we have finite orbits of order » under
the evolution T'=ho A+ ¢ for any ¢, h constructed in Sections 3 and 4. We
can also see that orbits of length # continue to exist under small pertur-
bations, that is, for

e 1 ¢ - ¢

e ¢ 1 ... ¢
A=

e € & 1

1 ¢ ¢ €

where 0 <& <1 (then 4>0).
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E. When 0e A(R \{0}), the results obtained in Section 4 for any
one of the transformations T= ho A4 - ¢ studied are little modified. In fact, it
can be shown that the orbits of the limit points are of the form
(¥, 2, ¥, z,...) or (¥, 2,0,0,..) with y, ze RS .

F. If 4 is symmetric positive definite [for instance, if 4 satisfies the
first condition of (34)], the solutions satisfy the following “generalized
eigenvalue equation”:

AEP =L with A>0, £20, > ¢&,=1 (52)

resS
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